WHEN ARE WE?
 Using probability to reason about the future

HISTORY OF THE EARTH 4,540,000,000 YEARS

Liquid water

Formation of Moon

Earliest birds and mal imals Opening of Atlantic O ean First dinosat rs Earliest flowering plant. First reptiles Earliest coal deposits First amphibian, insect, tree, and shark fossils

Formation of supercontinent Rodinia

Breakup of Rodinia
Early multicellular organisms Cambrian explosion

First land plants

Buildup of oxygen in atmosphere

CHRONOCENTRISM

COPERNICAN PRINCIPLE

ANTHROPIC PRINCIPLE, SELF-SAMPLING ASSUMPTION

DOOMSDAY ARGUMENT

CHRONOCENTRISM

Our time is special.

COPERNICAN PRINCIPLE

No it's not.

ANTHROPIC PRINCIPLE, SELF-SAMPLING ASSUMPTION

Maybe it is.

DOOMSDAY ARGUMENT

How much time is left?

PROBABILITY AND STATISTICS

~ 1654 correspondence re: probability

BAYES' THEOREM

Bayes' theorem (1763) at the offices of HP Autonomy
 per year in one

The fraction that
The fraction of can go on to support stews with intelligent like.

Length of time such sintisations release detestable signs into space.

The fraction that can go on to support life. Coo)
The average number of planets
that an potentially support le (fer stor with planets.)

The $D_{\text {rake }} \S_{q u a t i o n . ~}$

A civilization would have to last 10 million years to be visible
on this timeline as a single pixel

WHAT ASSUMPTIONS SHOULD WE MAKE ABOUT TIME?

The typical mammalian species lasts about a million years.
Anatomical humans evolved around 300,000 years ago.

The first cities are about 10,000 years old.

About 100 billion people have lived.
About 8 billion are alive now.

The first cities are about 10,000 years old.

The typical mammalian species lasts about a million years.
Anatomical humans evolved around 300,000 years ago.

So maybe we're about $1 / 3$ of the way through out time...

The typical mammalian species lasts about a million years.
Anatomical humans evolved around 300,000 years ago.
But new species can evolve from old ones...

So maybe we're just the first stage of...

How Many People Have Ever Lived?

Year	Population	Births per 1,000	Births Between Benchmarks	Number Ever Born	Percent of Those Ever Born
50,000 B.C.E.	2	-	-	-	-
8000 B.C.E.	$5,000,000$	80	$1,137,789,769$	$1,137,789,769$	0.4
1 C.E.	$300,000,000$	80	$46,025,332,354$	$47,163,122,125$	0.6
1200	$450,000,000$	60	$26,591,343,000$	$73,754,465,125$	0.6
1650	$500,000,000$	60	$12,782,002,453$	$86,536,467,578$	0.6
1750	$795,000,000$	50	$3,171,931,513$	$89,708,399,091$	0.9
1850	$1,265,000,000$	40	$4,046,240,009$	$93,754,639,100$	1.3
1900	$1,656,000,000$	40	$2,900,237,856$	$96,654,876,956$	1.7
1950	$2,516,000,000$	$31-38$	$3,390,198,215$	$100,045,075,171$	2.5
1995	$5,760,000,000$	31	$5,427,305,000$	$105,472,380,171$	5.5
2011	$6,987,000,000$	23	$2,130,327,622$	$107,602,707,793$	6.5
2017	$7,536,000,000$	19	$867,982,322$	$108,470,690,115$	6.9
2030	$8,563,000,000$	16	$1,806,595,106$	$110,277,285,221$	7.8
2050	$9,846,000,000$	15	$2,833,529,982$	$113,110,815,203$	8.7

[^0]
About 100 billion people have lived.

About 8 billion are alive now.

About 100 billion 7 people have lived.
About 8 billion are alive now.

 (10,000 YEARS IS APPROXIMATELY 400 GENERATIONS OF HUMANS)

 (10,000 YEARS IS APPROXIMATELY 400 GENERATIONS OF HUMANS)}

Humanity today and humanity's past $\begin{aligned} & \text { Our World } \\ & \text { in Data }\end{aligned}$

Our potential future is vast

The sun will exist for another 5 billion years. If we stay alive for all this time - and based on the scenario above - this would be a future in which 625 quadrillion children will be born.
How big would a chart be that shows this future? If you have a shelf with 30 books, each of which has 200 pages, then this same chart that you
see here - showing the birth of 100 trillion And humanity could survive for even longer
"To put it more simply: Out of all people who will ever live, we should probably assume we're somewhere in the middle; after all, most people are.

If our population levels out around 9 billion, this suggests humans will probably go extinct in about 800 years, and not more than 16,000.

This is the Doomsday Argument.

Yeah, but that's stupid

Almost everyone who hears this argument immediately sees something wrong with it.

The problem is, everyone thinks it's wrong for a different reason. And the more they study it, the more they tend to change their minds about what that reason is.

Since it was proposed in 1983, it's been the subject of tons of papers refuting it, and tons of papers refuting those papers. There's no consensus about the answer; it's like the airplane on a treadmill problem, but worse."

Humanity today and humanity's past $\begin{gathered}\text { Our World } \\ \text { in Data }\end{gathered}$

Our potential future is vast
 Our Worl

Every triangle in this chart ($\boldsymbol{\nabla}$) corresponds to 7.95 billion people, the number of people alive today.
Humanity's past
Humanity's present \odot All people who are alive toda, 7.95 billion. Those of us who are alive now are about 6.8% of all people who ever lived

[^1] \downarrow global life expectar risesto 88 years

 Lawainan secer
occan and beco new
300,000 years from today And humanity could survive for even longer

HISTORY OF THE EARTH 4,540,000,000 YEARS

Liquid water

Formation of Moon

Earliest birds and mammals Opening of Atlantic Ocean First dinosaurs Earliest flowering plants First reptiles Earliest coal deposits First amphibian, insect, tree, and shark fossils

Formation of supercontinent Rodinia

Breakup of Rodinia
Early multicellular organisms Cambrian explosion

First land plants

Buildup of oxygen in atmosphere

HISTORY OF THE EARTH 4,540,000,000 YEARS

Liquid water

Formation of Moon

Earliest birds and mal imals Opening of Atlantic O ean First dinosat rs Earliest flowering plant. First reptiles Earliest coal deposits First amphibian, insect, tree, and shark fossils

Formation of supercontinent Rodinia

Breakup of Rodinia
Early multicellular organisms Cambrian explosion

First land plants

Buildup of oxygen in atmosphere

Draw something here. Use additional sheets if necessary

Year: 2017

Current: 7.5B

Total ever: 108B

Pick a point in your drawing and estimate the following:

Year: \qquad
Current:
Total ever: \qquad

[^0]: Source: Toshiko Kaneda and Genevieve Dupuis, 2017 World Population Data Sheet (Washington, DC:

[^1]: (He $\begin{aligned} & \text { The } 12,572 \text { triangles below represent all people who might be born in the future - from } 2022 \text { onwards. }\end{aligned}$

