Batteries

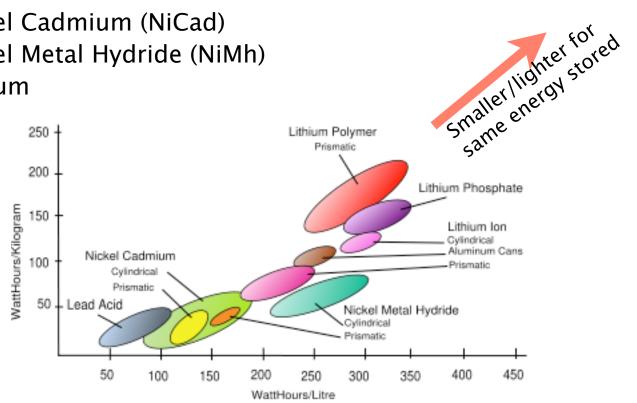
Energy ITP / NYU / Feddersen

Batteries

Electrochemical energy storage devices. Many materials, chemistries, forms.

No matter how they work, the same considerations apply as for any energy storage:

- Energy per unit volume and mass
- Power per unit volume and mass
- Efficiency ratio of energy in to energy out


General battery concepts

- "Cell" refers to single electrochemical unit; "battery" to an array of cells.
- Voltage of a cell is intrinsic to chemistry involved; maximum current depends on amount of material (like PV).
- Cells can be arranged in **parallel** to increase maximum **current**.
- Cells can be arranged in **series** to increase **voltage**.
- "**Primary**" = non-rechargeable, "**secondary**" = rechargeable.
- Exceeding maximum or minimum cell voltage will damage the cell (potentially hazardously).

Chemistry – what is the battery made of?

Effects energy density, charging methods, safety considerations, etc. Some common types are:

- Lead acid
- Nickel Cadmium (NiCad)
- Nickel Metal Hydride (NiMh)
- Lithium



Capacity – how much can the battery hold?

Typically specified in **amp-hours** (or milliamp-hours), abbreviated Ah or mAh.

Can be roughly converted to watt-hours (or Joules) by multiplying amps * 1 hour * nominal voltage.

Capacity – how much can the battery hold?

For example:

Battery in my (v. old) phone specifies both milliamp-hours and capacity:

5.6 Wh

```
1500mAh @ 3.7V (typical Li-ion voltage)
```

```
1500mA * 3.7V * 1 hour = 19,980 Joules = 5.55 Wh
```

C-Rate

Battery charge/discharge currents are typically given as a ratio to total capacity called the C-Rate.

For example, for a 750 mA-hour battery:

1C = 750mA

2C = 1500 mA

.5C = 375 mA

A very important battery specification will be its **maximum safe discharge current**. This will vary widely depending on battery type.

The rated capacity of a battery is (usually) specified for its C/ 20 (1/20 C) discharge rate. Higher or lower rates of discharge may decrease realized capacity.

ITP Energy channel has detailed lecture on Amp-hours and C-Rate

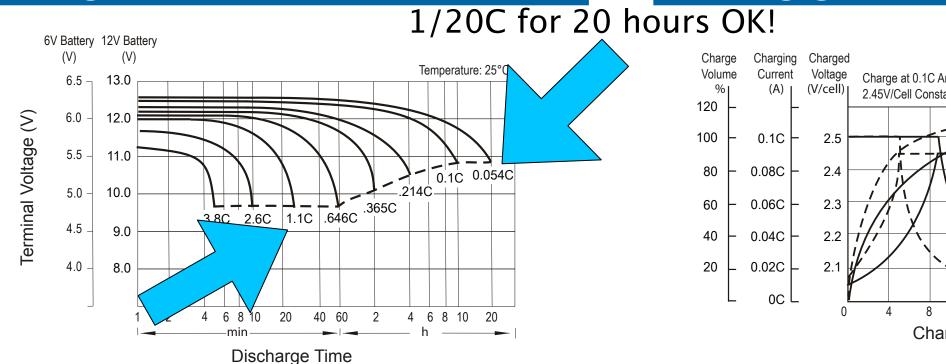
Capacity - technical note

Technical Detail:

Actual capacity depends on how fast the battery is discharged. Discharging a battery very quickly, or slowly, can reduce the realized capacity.

The capacity figure is given for 20-hour discharge rate (C/20)

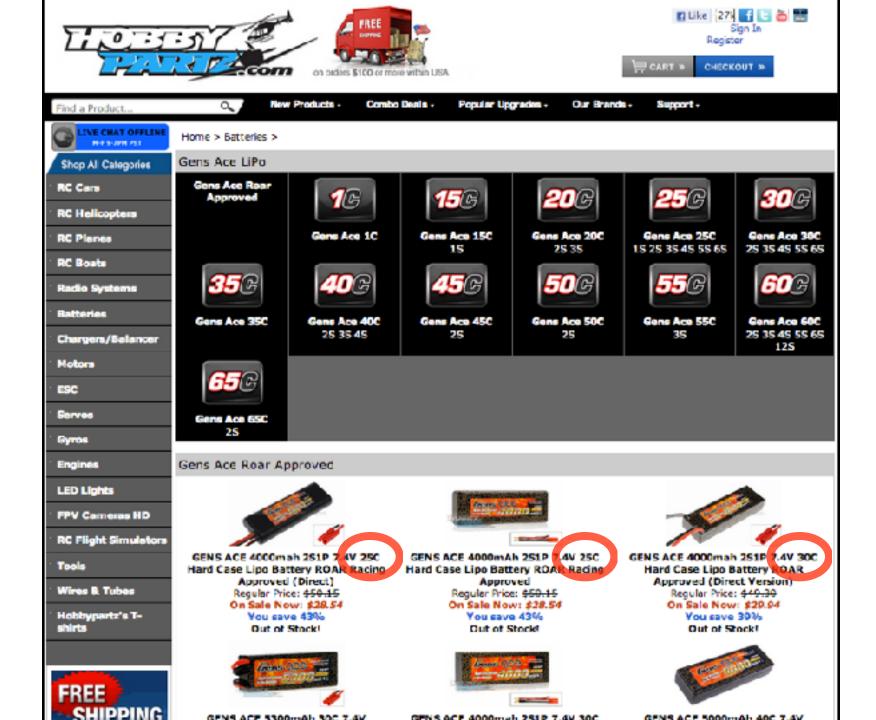
For example:


A 12 volt battery (~14–10V during use) with a rated capacity of 10 amp-hours could average 12V while supplying 1/2 amp (500 mA) for 20 hours:

(12 volts) * (500 milliamperes) * (20 hours) = 432 000 joules

More about calculator.

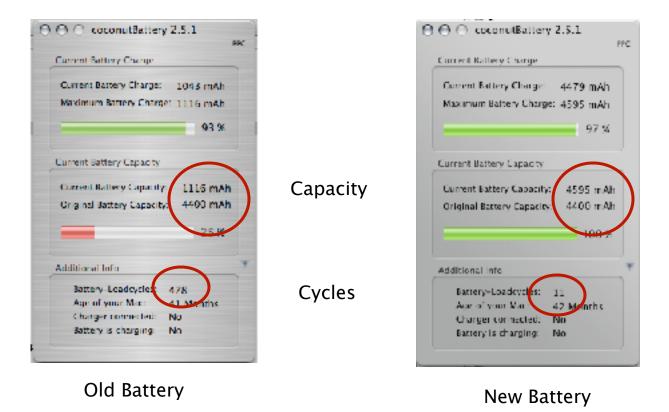
PDC-121100	12	107	100.0	12.99	330	6.81	173	8.46	215	8.66	220
PDC-122000	12	214	200.0	20.55	522	9.45	240	8.58	218	8.82	224


1C for only ~20 minutes, NOT 1 hour

Temperature Effects in Relation to Capacity

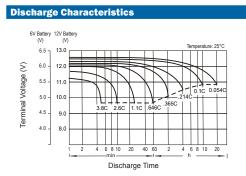
Discharge Characteristics

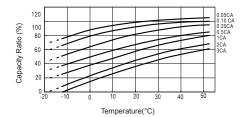
Cycle Life in Relation to I

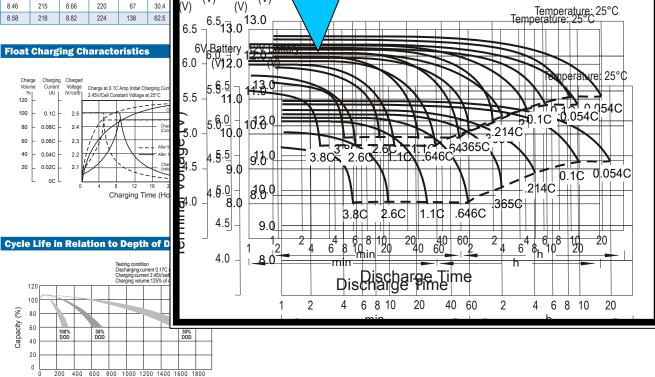

Float Charging Character

Other considerations:

Battery life – how many times a battery can be charged and discharged. Varies widely by type.

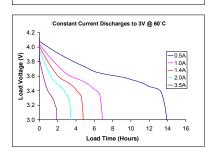

Depth of discharge – how deeply can it be discharged? Decreasing DOD increased life expectancy.

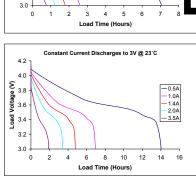

PDC Series - AGM Deep Cycle Batteries

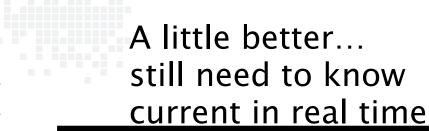

Model	Nominal	ninal Rated Capacity AH		Ler	ngth	Width		Height		Total Height		We	ight	Terminal Typ
woder	Voltage	20-hr	10-hr	in.	mm.	in.	mm.	in.	mm.	in.	mm.	lbs.	kgs.	remina iy
PDC-1275	12	7.5	7.2	5.94	151	2.56	65	3.72	94.5	3.94	100	5.5	2.5	F2
PDC-1285	12	8.5	8.0	5.94	151	2.56	65	3.72	94.5	3.94	100	6.0	2.7	F
PDC-12140	12	14.0	13.0	5.96	151.5	3.92	100	3.82	97	3.98	101	9.5	4.3	F2
PDC-12200	12	21.0	20.0	7.15	181.5	3.01	77	6.73	171	6.73	171	15	6.9	B (T12)
PDC-12260	12	28.0	26.0	6.56	166.5	6.89	175	4.92	125	4.92	125	21	9.4	NB
PDC-12260H	12	26.0	24.0	6.50	165	4.92	125	6.89	175	6.89	175	21	9.5	B (T12)
PDC-12350	12	35.0	33.0	7.68	195	5.12	130	6.46	164	7.09	180	25	11.2	NB
PDC-12400	12	40.0	38.0	7.76	197	6.50	165	6.69	170	6.69	170	32	14.5	B (T6)
PDC-12600	12	60.0	55.0	9.04	230	5.45	138	8.27	210	8.66	220	39	17.7	U (T9)
PDC-12800	12	80.0	75.0	10.24	260	6.61	168	8.27	210	9.06	230	50	22.7	U (T14)
PDC-121000	12	100	92.0	12.05	306	6.61	168	8.27	210	8.50	216	61	27.5	(V)
PDC-121100	12	107	100.0	12.99	330	6.81	173	8.46	215	8.66	220	67	30.4	(V) (V)
PDC-122000	12	214	200.0	20.55	522	9.45	240	8.58	218	8.82	224	138	62.5	ُے 6.5
														C F 0.0

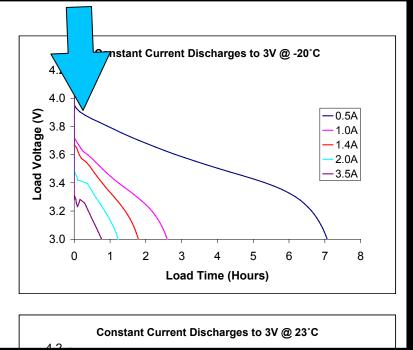
Hard to use Voltage alone to determine state of battery since these curves are so flat

Temperature Effects in Relation to Capacity


Number of Cycles


Contact Information			www.power-sonic.com
DOMESTIC SALES Tel: +1-619-661-2020 Fax: +1-619-661-3650 national-sales@power-sonic.com	CUSTOMER SERVICE Tel: +1-619-661-2030 Fax: +1-619-661-3648 customerservice@powersonic.com	TECHNICAL SUPPORT Tel: +1-619-661-2020 Fax: +1-619-661-3648 support@power-sonic.com	INTERNATIONAL SALES Tel: +1-650-364-5001 Fax: +1-650-366-3662 international-sales@power-sonic.com
CORPORATE OFFI	CE • 7550 Panasonic Way • San Diego, CA 92	154 • USA • Tel: +1-619-661-2020 • Fa	x: +1-619-661-3650 0912 1M


2012. Power-Sonic Corporation. All rights reserved. All trademarks are the property of their respective owners



Enlarged View **El===**\$ RED WIRE (+) 20.0 BLACK WIRE (-) [0.79] **Little** BLACK WIRE (-) RED WIRE (+) Maximum Dimensions in 70.0 mm [inches] [2.76] Load Voltage (V) 63.2 60.0 [2.49] [2.36] **Performance Graphs** Charge Characteristics @ 23°C Constant Current Discharges to 3V @ -20°C 4.2V Constant Voltage Charge with 2.0A Current Limit 4.2 4.4 8.0 4.0 Voltage (V) -0.5A -1.0A -1.4A -2.0A 7.0 4.2 - 6.0 5.0 ¥ 4.0 3.8 3.6 hanitu 4.0 () 3.0 Cabacity -3.5A **b** 3.4 3.4 2.0 3.2 3.2 1.0 3.0 3.0 0.0 0 2 3 5 1.0 2.0 3.0 1 4 6 0.0 4.0 Time (Hours)

UBBL07 ©2014 Ultraife Corporation + www.ultraiflecorp.com + All information is subject to change without notice. The information contained herein is for reference only and does not constitute a warranny of performance. + 30 OCT 14 UBM-5161 Rev: G

Charging

Charging batteries can be very complex.

Doing it wrong can be dangerous!

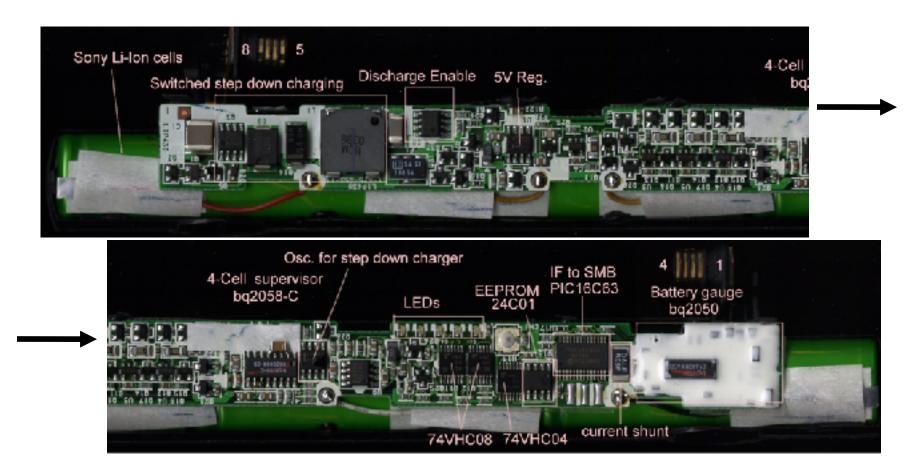
Boeing Dreamliner

and the list goes on... (Note 7, Hoverboards...)

Charging – the hard (high performance) way

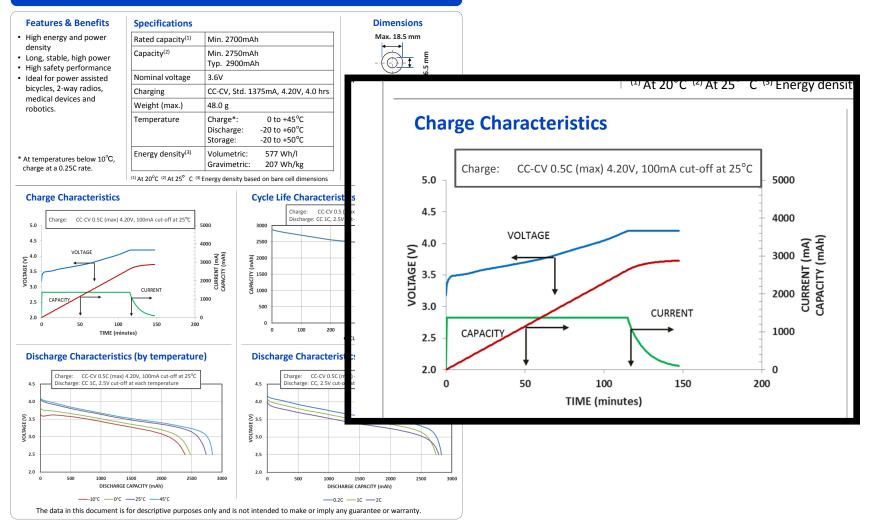
In order to maximize battery performance (most energy over longest time in smallest, lightest package) complex battery monitoring and charging circuits and algorithms are used.

They take into account:


- Complete charge/discharge history of battery
- Temperature
- Battery age

An advanced system typically uses a combination of **constant current** and/or **constant voltage** charge stages coupled with **current, delta V, and/or delta T monitoring** (changes in the rate of change of voltage or temperature). These will be tailored to the battery chemistry, number of cells, and other considerations. Term of art is "**coulomb counting**"

Charging - the hard (high performance) way


Many manufacturers (Maxim, Analog Devices, etc) make dedicated battery ICs. (And publish whitepapers covering charging specifics)

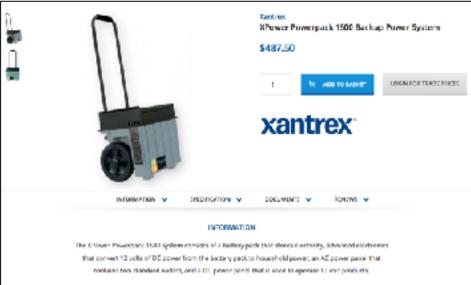
The "Smart Battery" standard includes microcontrollers in the pack to communicate battery state to host device.

Panasonic

Lithium Ion NCR18650PF

Jun. 2016 | Copyright© 2016 All Rights Reserved.

~1Wh AAA alkaline


TPIT

IN MUMPHINIS

~10Wh smart phone battery

~100Wh laptop battery

PRATURNE

Operates 120 Vac or 12 Vac anodusts anywhere
Sealed, non-opiliable S1 amp-hour ASM becomy

inerey

KODIAK

12:4

を語

~1kWh portable battery "generator"

Inergy

⊚

Inergy Kodiak 1100 Watt (1.1kWh) Power Bank Solar Generator - Basic Model - Lithium Ion Emergency & Camping Electric Battery Portable Power Source

N A To customer reviews [To Failswered questo

Note: This item is only available from third-party sellers (see all offers).

Available from these sellers.

- Ultra-light weight 20 lbs.
- Expandable with deep cycle lead acid batteries
- Solar charging minimum charge time 2.5 hours.
- 1100 Watt hour lithium ion battery 2000 cycles
- 1 year warranty

New (1) from \$1,599.99 & FREE shipping.

CReport incorrect product information.

Usable Capacity 13.5 kWh

Depth of Discharge 100%

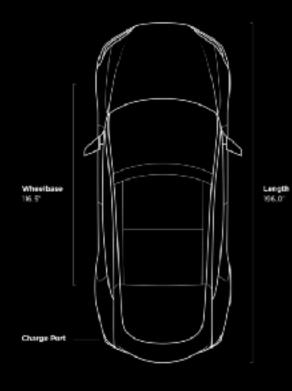
Efficiency 90% round-trip

Power 7kW peak / 5kW continuous

Supported Applications Solar self consumption Time of use load shifting Backup Off grid Scalable Up to 9 Powerwalts

Operating Temperature -4° to 122°F / -20°C to 50°C

Dimensions L x W x D: 44" x 29" x 5.5" (1150mm x 755mm x 155mm)


Weight 264 4 lb / 120 kg

Installation Floor or wall mounted Indoor or outdoor

						Cost	per 1	īotal	war	rante		Wh {	1 сус	cle p	er di	ay)										-	\$1.35	\$1.43	\$1.46	\$1.53
	EC.05	\$0.42	50.38	\$0.35	50.40	50.48	\$0.51	\$0.54	\$0.55	\$0.57	\$0.58	87.05	\$0.56	29 62	2005	\$0.72	\$0.74	\$0.74	50.43	50,83	2605	\$0.97	\$1.01	\$1.10	\$1.15	51.24	5			
(Dra) 7 IIEMJAMOJ BISA	Tesia Powerwali 2 (AC)	DCS PV 5.0	LG Chem Kesu 10	3MZ E553.0	LG Chern RESU 6.5	Enghase AC Battery	EUMOFO E-Cells ALB52-105	Angelus Energy Pod	Aguion Aspen 485-2.2	Pylortech Extra2000 LFP	Panasoric U 5K84A	sion Power Systems Titan-3	Akasol neeoQuba	Ledanche Apollion Cube	GCL E-KwBe 5.5	Surwerge SIS	Hybrid "Home" Plus	PowerOak ESS	Freedom Powerbank HPHI 5	Fron us Solar Battery	Sonnentatterle	Celta Hybrid E5	Sumanny ESS AIO	SolaX 30X	Redflow Zoel	Nagellan HESS	Lecianche TI-Box	GridEdge Quantum	Alpha-ESS STORION SS	BYD Mini ES

~10kWh home battery

esta Powerwall 2 (DC)

Model S Specs

Battery 100 kWh

Acceleration 2.5s 0-80 mph

Range .315 miles

Drive A FWheel Drive

Seating 5 Adults + 2 Children

Wheels 18° or 21°

🛨 EXPAND LIST

Weight 4,941 lbs

Cargo 30 cu ft

Displays Driver Display + 17° Touchscreen

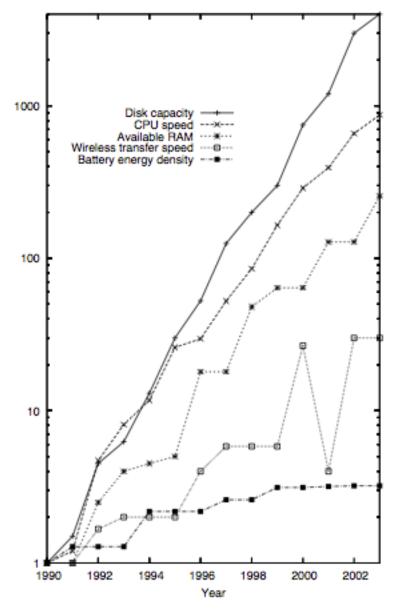
Supercharging Free, Unlimited (with referral)

Delivery Timing I-8 weeks

Warranty 4 years, basic vehicle 8 years, cattery & powertrain

1-10MWh Grid-backup GTM forecast: 1.6GW in US by 2020 This was built in 2017 in West Caldwell, NJ

896kW solar


More data: http://css.umich.edu/sites/default/files/U.S._Grid_Energy_Storage_Factsheet_CSS15-17_e2017.pdf

COMPARISON OF LITHIUM CHEMISTRIES

CHARACTERISTIC	LFP (LiFeP0,)	NMC (LINIMnCoO2)	LCO (LICoO2)	LMO (LiMn ₂ 0 ₄)	LTO (Li,Ti ₅ 0 ₁₂)
Voltage	3.2VPC (operating range 2.5-3.65VPC)	3.6VPC (operating range 3-4.2VPC)	3.6VPC (operating range 3-4.2VPC)	3.7VPC (operating range 3-4.2VPC)	2.4VPC (operating range 1.8-2.85VPC)
Specific Energy	90-120 Wh/kg	150-220 Wh/kg	150-200 Wh/kg	100-150 Wh/kg	50-80 Wh/kg
Energy Density	333 Wh/I	580 Wh/1	560 Wh/I	420 Wh/I	177 Wh/I
Charge Bate	10	0.7-1C (>1C shortens life)	0.7-1C (>1C shortens life)	0.7-1C (3C Max)	1C (5C Max)
Charge Voltage	3.5-3.65VPC	4.2VPC	4.2VPC	4.2VPC	2.85VPC
Discharge Rate	1C (30C power cells); 2.0V cut-off	1C (2C on some cells); 2.5V cut-off	10 (>10 shortens life); 2.5V cut-off	1C (>1C shortens life); 2.5V cut-off	10C (30C 5 sec); 1.8V cut-off
Cycle Life (depending on depth of discharge)	2000-4000	1000-2000	500-1000	300-700	3000-7000
Thermal Runaway	270°C (518°F)	210°C (410°F)	150°C (302°F)	250°C (482°F)	NA
Prone to Thermal Runaway	No	Yes	Yes	Yes	No
Applications	Motive power and stationary needing needing high currents and endurance	E-bikes, medical devices, EVs, industrial	Mobile phones, laptops, tablets, cameras	Power Tools, medical devices, electric powertrains	UPS, electric powertrains, solar street lighting
Cost	\$	S	\$\$	\$\$	\$\$\$

Specifications	Lead Acid	NiCd	NiMH	Coball	Li-ion ¹ Manganese	Phosphale			
Specific energy (Whykg)	30-50	45-80	60-120	150-250	100-150	90-120			
Internal resistance	Very Low	Very low	Low	Moderate	Low	Very low			
Cycle life ² (80% DoD)	200-300	1,0 <mark>00</mark> 3	300-500 ⁸	500-1,000	500-1,000	1,000-2,000			
Charge time*	8-16h	1-2h	2 4h	2-4h	1-2h	1-2h			
Overcharge tolerance	High	Moderate	Low	Lor	harge				
Self-discharge/ month (room temp)	5%	20%5	30%5	Protection	<5% circuit consum	es 3%/month			
Cell voltage (nominal)	2 V	1.2V ⁶	1.216	3 6V7	3.7V7	3.2-3.3V			
Charge cutoff voltage (V/cell)	2 40 Float 2.25	Full charge by voltage		4 20 Some go	3 6 <mark>0</mark>				
Discharge cutoff voltage (V/cell, 1C)	1.75V	1.0	07	2.50	-3.00V	2.50V			
Peak load current Best result	50 ⁶ 0.20	20C 1C	5C 0.5C	20 <10	>30C <10C	>30C <10C			
Charge temperature	-20 to 50°C (-4 to 122°F)	0 to - (32 to	and the second second		0 to 45°C ⁹ (32 to 113°F)			
Discharge temperature	-20 to 50°C (-4 to 122°F)	20 to (4 to			-20 to 60°0 (-4 to 140°F				
Maintenance requirement	3 6 months ¹⁰ (toping chg.)	Full dischard	gc every 90 in full use	Maintenance free					
Safety requirements	Thermally stable	Thermally s		Protect	tion circuit ma	nd atory s			
In use since	Late 1800s	1950	1990	1991 1996		1999			
Toxicity	Very high	Very high	Low	Low					
Coulombic efficiency ¹²	-90%	~70% slo ~90% fas		99%					
Cost	Low	Mod	erate	High ¹³					

https://batteryuniversity.com/

"Don't let anybody tell you batteries are going to get better. They can't, it's physically impossible." Batteries are made of electrons on metal with oxygen in between; without a way to compress matter and make it more dense, battery store can't improve, ever. What people can speak to is "power density" — but on the whole, batteries are "lousy, lousy, lousy, lousy." We use fuels because they have lots of energy. We could use other energy sources, but when push comes to shove, we get a lot of energy out of fuels, because we can put electrons in tiny volumes of space.

Daniel Nocera interviewed in: http://poptech.org/blog/ daniel_nocera_on_personalized_energy