

$18,000,000,000,000$

Total Primary Energy Production

Quadrillion Btu

World North America

Eia Source: U.S. Energy Information Administration
Source: EIA Total World Primary Energy Production ~550 Quadrillion BTUs $/ 1$ year $=1.8 \times 10^{13}$ Watts

See notes from MacKay and EIA on conversions when aggregating disparate energy sources.

Smil's "orange on the table" example:

$$
\begin{gathered}
((.1 \mathrm{~kg}) *(10((\mathrm{~m} / \mathrm{s}) / \mathrm{s})) *(1 \mathrm{~m})) /(1 \mathrm{~s})= \\
1 \text { watt }
\end{gathered}
$$

Smart phone use:

~ 10 watt-hour battery typical, ~ 10 hours active use =
~1 Watt

Apple battery capacities in Watt-hours
iPhone 8 Plus:10.28 Wh

Smart phone use:

~ 10 watt-hour battery typical,
~ 10 hours active use =

~1 Watt

00

Koomey's law:

the number of computations per joule of energy dissipated doubled about every 1.57 years.

Professor Jonathan Koomey described the trend in a 2010 paper in which he wrote that "at a fixed computing load, the amount of battery you need will fall by a factor of two every year and a half."

IEEE Annals of the History of Computing, March 2010

TW
 GW

Small Device Charging 5 Volts * 2 Amps

18,000, 000

 Laptop use

 Laptop use}
~100 Watt-hour battery / 10 hours =
~10 Watts

GW

MW
 kW 100^{π}

Small electric scooter: ~100 Watts

18,000, 000,

Medium-sized solar panel ~100 Watts

GW

Human
2000 kilocalories $/ 1$ day $=$ ~100 Watts

Small kitchen appliance in use: ~1000 Watts (1 kW)

1000W Microwave

1000W Toaster

Average US whole-home electricity use:
~1000 Watts (1 kW)

18 ,

Average US whole-home electricity use: ~1000 Watts (1 kW)

US Average:
(10,800 kilowatt hours) / (1 year) = 1230 watts

Source: EIA "In 2016, the average annual electricity consumption for a U.S. residential utility customer was $10,766 \mathrm{kWh}$, an average of 897 kWh per month.

Louisiana had the highest annual electricity consumption at 14,881 kWh per residential customer and Hawaii had the lowest at 6,061 kWh per residential customer."

18,

Average US whole-home electricity use: ~1000 Watts (1 kW)

US Average:
(10,800 kilowatt hours) / (1 year) = 1230 watts

Jeff:
(6,429 kilowatt hours) / (1 year) = 733 watts

Jeff: (6,429 kilowatt hours) / (1 year) = 733 watts
Louisiana: (14,900 kilowatt hours) / (1 year) $=$ 1700 watts
Hawaii: (6,000 kilowatt hours) / (1 year) = 685 watts

Average US whole-home electricity use:

~1000 Watts (1 kW)

US Average:
(10,800 kilowatt hours) / (1 year) = 1230 watts

Household Electricity Consumption (kWh/year)

2-3m wind turbine in strong wind ~1000 Watts (1 kW)

18,000, 000, 010,000
 Large roof covered in solar panels ~10kW peak output

18,000, 00
 MW 0 10,000

300 Amp welder ~10kW

http://www.lincolnelectric.com/en-us/support/ process-and-theory/Pages/inverter-power-detail.aspx

18,000,
 $000,010,000$

"Every person in the United States uses energy as if they had $\mathbf{1 0 0}$ personal servants at their beck and call"

- Obama Energy Secretary Steven Chu in 2009

18,000, 000 $0,010,000$

"Every person in the Unitod' States uses energy as if they had 100 personal servants at their beck and call"

Stop here for today, Jeff

100,000猃们

18 Bi,000,00
 Output power of the Kia Rio ~100kW (130 hp)
 MW
 100,000夜分 25

18,
 GW

0

~1MW (1400 hp)
 Output power of the Bugatti Chiron

$17,000,000$
 率彷 12

TW
 Input laser power for EUV lithography ~1MW

GW
 000,

$17,000,000$
"Smallest" utility-scale wind turbine ~1-2 MW

Largest utility off-shore turbine ~10MW

1 Vestas V164

 9.5MW record in 2017
$18,000,010,000,000$

 Medium-sized utility solar an in an in 5 ~10MW (13.4MW)10MW Spartan Solar
North Hanover, NJ 30,000 solar panels

$18,0000,010$ ~10MW (13.4MW)

18,000

Most powerful jet engine (GE90 777)
$\sim 100 \mathrm{MW}$

Peaker power plant, coal-natural gas conversion

GW MW $000,000^{N}$
63

$7 \stackrel{\text { TW }}{8}, 00$
 GW
 MW
 000,000

 100MW
 10MW
 1MW
 100kW

$18,010,000,000,000$ $x \rightarrow=-\infty$

World's largest hydroelectric dams ~10GW

Guri Dam, Venezuela 10.2GW

$18,010,000,000,000$ $x=1-2 x \mid 2$

World's largest hydroelectric dams ~10GW

Three Gorges Dam, China 22.5GW

18,0

 $10,000,000,000$

 $10,000,000,000$}

The Space Shuttle at liftoff ~10GW

$18,010,000,000,000$ (or large states) ~10GW

. 3 Quads $/ 1$ year $=\sim 10$ GW

18,0 $10,000,000,000$

Source: eia.gov global total primary energy consumption by country

$18,100,000,000,000$

TW 100,
 000,
 Countries! ~100GW

3 Quads / 1 year $=\sim 100$ GW

Venezuela

Egypt

Pakistan

1
 TW
 GW
 $000,000,000$

$11,000,000,000,000$ Countries! ~1TW

30 Quads $/ 1$ year $=\sim 1$ TW

Russia

India

$10^{\mathrm{LN}}, 000^{\mathrm{GN}}, 000,000,000^{\mathrm{N}}$

$10,000,000,000,000$ xollexit

No single country! ~10TW 300 Quads $/ 1$ year $=\sim 10 T W$

