NOW:

TIME

BACR

.. ~ ~100BCE

CLOCK of the LONG NOW 01997, ONGOING

A Story That Lasts 10,000 Years (featuring Neil Gaiman)

WHY TIME ATITP?

PFilloSOPHY

Language, history, politics, life...
$+$

SCIENCE

Modeling nature, engineering, code, design...

$x+2$

 $5 \frac{433^{-}}{5}$

- B 2

Sparkfun RTC Breakout boards

Russian GLONASS satellite with atomic clock

gnomon (n.)

"vertical shaft that tells time by the shadow it casts" ... from Latin gnomon, from Greek gnōmōn "indicator (of a sundial), carpenter's rule" ... "one that discerns or examines, interpreter, expert," from gignōskein "to come to know," from Proto-IndoEuropean root *gno- "to know。"

ARJUNA

"As rivers flow into the ocean, all the warriors of this world are passing into your fiery jaws; all creatures rush to their destruction tike moths to a flame. You lap the worlds into your burning mouths and swallow them... Tell me who you are, 0 Lord of terrible form. I bow before you; have mercy! I want to know who you are, you who existed before all creation. Your nature and workings confound me."

KRISHNA
"I AM TIME, DESTROYER OF ALL."

TAOSI GNOMON

Xiangfen 襄汾, Shanxi Province
2300-1900 BCE
Oldest gnomon, oldest observatory

TAOSI GNOMON

Xiangfen 襄汾, Shanxi Province
2300-1900 BCE
Oldest gnomon, oldest observatory

Handbook of Archaeoastronomy and Ethnoastronomy

TAOSI GNOMON

Xiangfen 襄汾, Shanxi Province
2300-1900 BCE
Oldest gnomon, oldest observatory

Handbook of Archaeoastronomy and Ethnoastronomy

EGYPTIAN SUNDIAL

13th century BCE "temporary hours"

BYZANTINE SUNDIAL 6TH CENTURY CE

JANTAR MANTAR, JAPUR

HORIZONTAL

VERTICAL

EQUITORIAL

ebay.com

CONCAVE

Jang Yeong-sil Science Garden

https://www.youtube.com/watch?v=_E3lqHq2tNU

https://www.suncalc.org/\#/40.693,-73.9875,17.72/2019.09.04/14:54/1/3

SPACE

A SPHERE IN SPACE

A SPHERE IN SPACE, SPINNING

All circles connecting the poles are the same size, and are as large as possible.

This in the largest circle perpendicular to the axis of rotation. It is half way between the poles.

RELATIVE SIZE, SUN 109X EARTH'S DIAMETER

1,392,000 km

RELATIVE DISTANCE, EARTH NOT VISBLE

A SPHERE IN SPACE, SPINNING, TILTED

A SPHERE SPINNING, TLLTED, AND ORBITING
 WITH CONSTANT TILT

Autumnal Equinox

September 22

(PHEW)

A SPHERE WITH FRIENDS

A SPHERE WITH FRIENDS

South

$\cdot 0$
$0 \& \quad 0 \cdot$

Mars is overhead

View for you = Planetarium

WHY "ECLIPTIC"

(PHEW X 2)

(PHEW X 3)

SU SONG ASTRONOMICAL WATER CLOCK 01094 CE, FIRST ESCAPEMENT

"Thus if the water is made to pour with perfect evenness, then the comparison of the rotary movements (of the heavens and the machine) will show no discrepancy or contradiction; for the unresting follows the unceasing."

ARMILLARY SPHERE MADE BY GIROLAMO DELLA VOLPAIA, FLORENCE ITALY, 01554

AUGHRA'S ORRERY

Dark Crystal

Flown to the Lunar Surface on A ApoLLO x)

https://space.stackexchange.com/questions/1621/where-are-pioneer-10-11-and-the-voyagers-ultimately-headed

EXISTING

 N TIME

Krzysztof Penderecki: Threnody for the Victims of Hiroshima (1960)

- filageolet tones

https://www.moma.org/explore/inside out/2012/12/21/exhibiting-
fluxus-keeping-score-in-tokyo-1955-1970-a-new-avant-garde/

Abstract

A computer is a clock with benefits. They all work the same, doing second-grade math, one step at a time: Tick, take a number and put it in box one. Tick, take another number, put it in box two. Tick, operate (an operation might be addition or subtraction) on those two numbers and put the resulting number in box one. Tick, check if the result is zero,

 and if it is, go to some other box and follow a new set of instructions.

EASING

Smoothly transition a variable from one value to another in a set time

SIMULATION

Use physics or other rules to determine next frame for one or more objects.

TIMELINES

Schedule code for execution in the future

EASNG Smoothly transition a variable from one value to another in a set time

Easing functions specify the rate of change of a parameter over time,

Objects in real life don't just start and stop instantly, and almost never move at a constant speed. When we open a drawer, we first move it quickly, and slow it down as it comes out. Drop something on the floor, and it will first accelerate downwards, and then bounce back up after hitting the floor.
This page helps you choose the right easing function.
C) Open Source

Help translate site to your language

easeOutCubic
easeOutQuint

easeInElastic

easeOutElastic

easelnBounce

easeOutQuad

cascOutBack

Quadratic Easing

Flash's Timeline tweens use something called quadratic easing-which could actually be termed "normal" easing. The word quadratic refers to the fact that the equation for this motion is based on a squared variable, in this case, t^{2} :

$p(t)=t^{2}$

NOTE: I olwoys wondered why the term quadratic (the prefix meons "four") is used to describe equations with 0 degree of two (x^{2}). While witing this chapter, I finally looked it up in the dictionary (RTFD, you might say). I discovered that quad originally refered to the four sides of o square. Thus, a squered vorible is quadrati.

I used the quadratic easing curve earlier in Figure 7-4. It's actually half a parabola. Here it is again, for reference purposes, in Figure 7-7

Here's the quadratic ease-in Actionscript function:

```
Math.easeInQuad = function (t, b, c, d) {
```

 return \(c^{*}(t /=d) * t+b ;\)
 \};

Recall that t is time, b is beginning position, c is the total change in position, and d is the duration of the tween.
This equation is more complex than the linear tween, but it's the
simplest of the equations that implement easing. Basically, I normalize t by dividing it by d . This forces t to fall between 0 and 1 . I multiply t by itself to produce quadratic curvature in the values. Then I scale the value from a

FIGURE 7.7

Groph of quadratic easing
Robert Penner's

SMUAATOI Use physics or other rules to determine next frame for one or more objects.

Craig Reynolds' Boids (1986)

Robert Hodgin's (Flight 404) Magnetosphere, 2007

$\mathrm{T}=0$

$$
y^{p}
$$

$$
\mathrm{T}=3
$$

\#include "cinder/Rand.h"
\#include "cinder/Sphere.h"
\#include "Particle.h"
using namespace ci;
Particle::Particle()\{\}
Particle::Particle(const Vec3f \&pos, float charge)
: mPos(pos), mCharge(charge)
mVel $=$ Vec3f::zero();
mAcc $=$ Vec3f::zero();
mForce
$=0.0 f$;
mRadius mShellRadius $=12.0 \mathrm{f}$;
\}
void Particle::update(const Camera \&cam, float dt)
Acceleration is sum of forces acting on particle Add acceleration to velocity
Add velocity to position

Sphere s	$=$ Sphere(mPos, mRadius * 10.0f);
mScreenPos	$=$ cam.worldToScreen(mPos, app::getWindowWidth(), app::getWindowheight());

mVel += mAcc $* \mathrm{dt}$;
mPos += mVel $* \mathrm{dt}$;
mAcc = Vec3f::zero();
mVel $+=$ mAcc $* d t$; mPos $+=$ mVel $* d t ;$ mAcc $=$ Vec3f::zero();
mShellRadius $=$ mRadius + fabs(mForce) * 50000. ff ;
mMatrix.setToIdentity();
mMatrix.translate(mPos);
"The physics of the simple vehicle model is based on forward Euler integration. At each simulation step, behaviorally determined steering forces (as limited by max_force) are applied to the vehicle's point mass. This produces an acceleration equal to the steering force divided by the vehicle's mass. That acceleration is added to the old velocity to produce a new velocity, which is then truncated by max_speed. Finally, the velocity is added to the old position:

```
    steering_force = truncate (steering_direction,
max_force)
    acceleration = steering_force / mass
    velocity = truncate (velocity + acceleration,
max_speed)
    position = position + velocity
```

The simple vehicle model maintains its velocity-aligned
local space by incremental adjustment from the previous
time step."

Pretty good source in-house

