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SOLAR TWO - MOJAVE DESERT, CALIFORNIA

Not to be confused with solar thermal applications
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More solar thermal

Sterling engine



Parans SkyPort
with custom
fixture

Also not to be confused
with direct use of sunlight
for illumination.
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Estimated U.S. Energy Use in 2009: ~94.6 Quads National Laboratory
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Source: LINL 2010, Data is based on DOE/EIA-0384(2009), August 2010, If this information or a reproduction of it is used, credit must be given to the Lawrence Livermore National Laboratory
and the Department of Energy, under whose auspices the work was performed. Distributed electricity represents only retail electricity sales and does not include self-generation, EIA
reports flows for non-thermal resources (i.e, hydro, wind and solar) in BTU-equivalent values by assuming a typical fossil fuel plant “heat rate”™ The efficiency of electricity production is
calculated as the total retail electricity delivered divided by the primary energy input into electricity generation. End use efficiency is estimated as 80% for the residential, commercial and
industrial sectors, and as 25% for the transportation sector. Totals may not equal sum of components due to independent rounding. LLNL-MI-410527
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OVERVIEW




4.2 billion kg of H -> Energy / second
so 3.85 x 1026 Watts (385 yottawatts!)

Solar constant in space at Earth locale:
1368 W/m?2

Distributed over Earth’s sphere:
342 W/m2

Average insolation (after reflection and absorption):
170 W/m?=

Global solar energy input:
87 PW (~7000x fossil fuel use)

source: Smil

Overview



PV works!
Enabling technology for telecom

and space exploration

MER originally planned for
~90 sols, have operated for
over 2000.

140W GaAs/Ge cells

Overview
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Terrestrial applications

Overview



~- -~ Fishermen in Kenya attracting shrimp w/ solar-

.~ charged lights (photo:Siemens)
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Small and large commercial applications

Overview
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Source:

Inset: Big Allis, first 1GW generator, in Queens.
Overview
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BASICS



All PV is similar in that:

Photovoltaic materials directly
convert light into electricity.

Most semiconductors
(including LEDs) do this
to some extent.

Source: http://www.imagesco.com/ Basics



Pure Silicon
. Silicon nuclei

N-Type Silicon

. Phosphorous nucleus

{ B [ B o o o The phosphorous
P ° ° ° atom creates
® . Py . ° . Py an extra electron.
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Source: http://www.techbites.com/ 0,0 , 0, Basics
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Electron Flow Photon Absorbed
in Depletion Zone
Electron-hole
Creation

Front Electrical Contact
Photon
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/

«— Depletion Zone
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\ Back Electrical

Electron-Hole Contact

Recombination

Source: http://www.imagesco.com/ Basics



Voltage dependent on

semiconductor type, current on

surface area.




Module

Multiple cells arranged in series
and parallel groups to achieve
desired voltage and current.




Array

Multiple modules arranged in

series and parallel groups to
achieve desired voltage and




In series: Voltage
sums, current
remains the same

In parallel: Voltage
stays the same,
current sums

3V

Basics



Metrics we care about are:

Rated performance
- “Watts-peak” under standardized conditions

Open Circuit (OC) Voltage
- voltage measured with no load

Short Circuit (SC) Current
- current through short circuit

And of course, cost...

Basics



\Q NJuUuLLING

KC80

HIGH EFFICIENCY
MULTICRYSTAL
PHOTOVOLTAIC
MODULE

TYPICAL CUTPUT 80 Wp

N Electrical Specifications
MODEL KC80

HIGHLIGHTS OF Kyq Maximum Power 80 Watts
Kyocera's advanced cell pracessing technol Maximum POWer Vonage 169 VO“S

efficient multicrysta photovoltaic medules
The conversion efficiency of the Kyocera solag
These cells are encapsulated between a temp
maximum protection from the severest enviro
The entira laminate is mstalled in an anogized ¢

Maximum Power Current 473 Amps

Open Circuit Voltage 21.5 Volts
Short-Circuit Current | 4.97 Amps

T e T AR b e e Length 976mm (38.4in.)

® Meadical facilities in rural areas

® Power source for summer vacation homes - :

OE-_rrr;rgeru;y communication systems W|dth 652mm (257|n )

® Water quality and environmental data monf] = 3
systems Depth SGmm (2.2|n. )

@ Navigation lighthouses, and ocean buoys -

Weight 8.0kg(17.71bs.)

S_II Note: The electrical specifications are under test conditions of Irradiance of

LAAS [ oen 2 NS ~t ~noo Aanmrd He Y S S PO ~ i ' B
p : z 1kW/m?, Spectrum of 1.5 air mass and cell temperature of 25°C
B Electrical Specifications
MOOEL | KCBO
Maximum Power a0 Warts 652 56
| - - - -
Maxirmyum Power Vollage 169 Volis ' SE— d il
| |
Maxumum Powar Curront 473 Amps l
- P 4 )
Open Circull Voltage 215 Vons | )
Shart-Circuit Curremt 497 Amps 0 T T
- Fasts > |
Length Q76mm (384in ) RN S T TR
Width 652mm (25.71n.) S T
Depth SBmm {23n.) {
Weght 8.0kg(17.71bs.)
Nate Tra clectrical specitications e under oSt conditions of Iradiarce of
W/ m Specrum o 15 ar v and oMl tamperatue ot 3SC

APULRT & Vet Vel 1K NIgiR 38 IR DRSS MCLIRLORLE B WIS J

Basics



DIFFERENCES



Different types of PV are distinguished by:

- Form of material (e.g. crystalline or thin film)
- Type of material (Si vs. CIGS vs...)

- Number of layers (“junctions”)

Different types will have varying efficiencies under different
conditions, and widely-ranging associated costs.

Differences



Monocrystalline Si ingot and cell

Circa 300 um thick
Si layer

Differences




Polycrystalline Si
ingot and cell

Circa 300 um thick
Si layer

Differences



Differences
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Amorphous or thin film PV

Circa 30 um thick



Efficiency (%)
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A Two-junction (concentrator) O Amorphous Si:H (stabilized) '
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O Multicrystaliine ¢ Inorganic cells .
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321~ @ Silicon Heterostructures (HIT)
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28
a JIBM
A lancemen .
Ammmm==
20+
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Mot o NREL (smakarea) é“d‘é?&i (c??%(: e United Soler
United Solar o transfer) &
12 . ?‘6\*
\
i United
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8 (2 pm /Ko .
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Groningen X
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Source: DOE NREL

Differences



100 %

90 % W Other
80 % CIS
70 %

W a-Si
60 %
50 % ® Ribbon
40 %

m CdTe
30 %
20 % H Mono
10 % .

B Multi

0%

1999 2001 2003 2005 2007 2009

Source: Cleanenergy Differences



For later:

Balance of system
Tracking methods
Concentrating systems
Solar lighting

Solar thermal

also:

Kardashev scale

Space based solar power
Dyson swarms

Differences



For now:

Planning a solar powered project

Planning



Size: Very Smalli

BEAM circuits. <1W PVs charge capacitors, discharged
through resistive loads by voltage monitor ICs. Can be
extended to power microcontrollers and other circuits.

Solarbotics Planning



Size: Small to Medium
g4 ST

Can you directly power what you want? See SolaSystem amplifier

from class notes.

B | I /7

If not, and you need to store energy, use consumer small-scale

charge controllers and batteries sized to your energy and power

budget. Farad-class ultra capacitors are also an option. Consider

direct DC-DC converters for loads. See ITP portable solar kits or

Solio chargers for examples
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Size: Medium to large

-

Use commercial grade modules, battery chargers and
batteries. Mature products exist for off-grid markets. Use
inverter as de facto common interface for AC loads.

Planning



CASE STUDY
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»;Ji; Solar powered sound mstallatlon
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Power system prototype: 5x ~4.5V solar modules in series' connected
W directly to a 12V 1.5 F capacitor.

S Helped asses time required to charge at locale.




Case study Earth Speaker__

Load prototype. Tested run-time / energy stored for dlfferent
frequencies, amplifiers, and speaker configurations.
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Case stud Earth Speaker ('
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Flnal eIectronlcs

- 1x 110F 16V cap

5x 55F 16V
caps

5V DC-DC
% = converter for logic




What does this do to electricity
use?




