

Axis

"Vertical" (Perpendicular to wind)

"Horizontal" (Parallel to wind)

Source: Inset: Big Allis, first 1GW generator, in Queens.

199619971998199920002001200220032004200520062007200820092010

*140 hp output

*1000 MW

Google Earth

Capacity factor: 20-40\%
2.3 MW $\times 365$ days $\times 30 \%=6 \mathrm{GWh}$

Offshore wind

Airborne Wind Turbines

Joby Energy is developing airborne wind turbines which will operate in the upper boundary layer and the upper troposphere.

While knowledge of the tremendous energy in high-altitude wind is not new, recent advances in power electronics, sensors, and control systems now make our technology practical.

Our multi-wing structure supports an array of turbines. The turbines connect to motorgenerators which produce thrust during takeoff and generate power during crosswind flight. Orientation in flight is maintained by an advanced computer system that drives aerodynamic surfaces on the wings and differentially controls rotor speeds. A reinforced composite tether transmits electricity and moors the system to the ground. The high redundancy of the array configuration can handle multiple points of failure and remain airborne.

For launch, the turbines are supplied with power to enable vertical take-off. Upon reaching the electrical tether. During occasional periods of low wind the turbines are powered to land the system safely.

Joby turbine data (predicted)

